Worst-case interactive communication - II: Two messages are not optimal

نویسنده

  • Alon Orlitsky
چکیده

X and Y are random variables. Person P X knows X, Person P Y knows Y , and both know the joint probability distribution of the pair (X; Y). Using a predetermined protocol, they communicate over a binary, error-free, channel in order for P Y to learn X. P X may or may not learn Y. How many information bits must be transmitted (by both persons) in the worst case if only m messages are allowed? ^ C 1 (XjY) is the number of bits required when at most one message is allowed, necessarily from P X to P Y. ^ C 2 (XjY) is the number of bits required when at most two messages are permitted: P Y transmits a message to P X , then P X responds with a message to P Y. ^ C 1 (XjY) is the number of bits required when communication is unrestricted: P X and P Y can communicate back and forth. It is known that one-message communication may require exponentially more bits than the minimum necessary: for some (X; Y) pairs, ^ C 1 (XjY) = 2 ^ C1(XjY)1. Yet just two messages suuce to reduce communication to almost the minimum: for all (X; Y) pairs ^ C 2 (XjY) 4 ^ C 1 (XjY) + 3. It was further shown that for a large class of (X; Y) pairs, two messages are optimal: ^ C 2 (XjY) = ^ C 1 (XjY). It remained uncertain whether two message are optimal for all (X; Y) pairs. In this paper we deene the chromatic-decomposition number of a hypergraph and show that under general conditions on (X; Y) it can be used to determine ^ C 2 (XjY). We use this result to prove that for some (X; Y) pairs, two-message communication requires twice the minimum number of bits: for all positive and c we present an (X; Y) pair for which ^ C 2 (XjY) (2) ^ C 1 (XjY) c.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Three results on interactive communication

7] A. Orlitsky. Worst-case interactive communication II: Two messages are not optimal. 11] H. Witsenhausen. The zero-error side information problem and chromatic numbers. 14] J. Friedman. Constructing o(n log n) size monotone formula for the kth threshold function on n variables. A m be determined for m 3? For one-way amortized complexity, let (k) be the chromatic number of G (k) , then ^ A 1 =...

متن کامل

Worst-Case Interactive Communication and Enhancing Sensor Network Lifetime

We are concerned with the problem of maximizing the worst-case lifetime of a data-gathering wireless sensor network consisting of a set of sensor nodes directly communicating with a base-station. We propose to solve this problem by modeling sensor node and base-station communication as the interactive communication between multiple correlated informants (sensor nodes) and a recipient (base-stat...

متن کامل

Worst-case interactive communication I: Two messages are almost optimal

38 We apply this theorem to relate ^ C 1 (XjY) to deterministic complexity measures. Corollary 6 For all (X; Y) pairs and all > 0, ^ C 1 (XjY) 4 ^ C 1 (XjY) + 2 log 1 : 2 Acknowledgements I thank Toby Berger and Peter Doyle for a discussion concerning Theorem 2, and Don Coppersmith for helpful comments. References 1] H. Witsenhausen. The zero-error side information problem and chromatic numbers...

متن کامل

Making Asynchronous Distributed Computations Robust to Noise

We consider the problem of making distributed computations robust to noise, in particular to worst-case (adversarial) corruptions of messages. We give a general distributed interactive coding scheme which simulates any asynchronous distributed protocol while tolerating an optimal corruption of a Θ(1/n) fraction of all messages while incurring a moderate blowup of O(n log n) in the communication...

متن کامل

Making Asynchronous Distributed Computations Robust to Channel Noise

We consider the problem of making distributed computations robust to noise, in particular to worst-case (adversarial) corruptions of messages. We give a general distributed interactive coding scheme which simulates any asynchronous distributed protocol while tolerating a maximal corruption level of Θ(1/n)-fraction of all messages. Our noise tolerance is optimal and is obtained with only a moder...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Information Theory

دوره 37  شماره 

صفحات  -

تاریخ انتشار 1991